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Singular value decomposition (SVD) is used in many applications such as real-time
signal processing where fast computation of these problems is needed. In this paper,
parallel algorithms for solving the singular value decomposition problem are discussed.
The algorithms are designed for optically interconnected multiprocessor systems where
pipelined optical buses are used to connect processors. In a pipelined bus system,
messages can be transmitted concurrently in a pipelined fashion. However, certain
restrictions may apply in a pipelined bus system. For example, a processor can send at
most one message and receive one message during a bus cycle. Pipelined bus in-
terconnection requires us to rethink how we write parallel algorithms. Fully exploring
the properties of concurrent message transmissions requires careful mapping of data,
an efficient addressing mechanism, and a set of efficient basic data movement operations.
In this paper, these issues are addressed in detail. Analysis of the parallel computation
times of the SVD algorithms shows that they are asymptotically equivalent to those
implemented on the hypercube while using substantially less hardware. The results
obtained in this paper further demonstrate that optically interconnected multiprocessor
systems are very promising as a new multiprocessor architecture.
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1. Introduction

One of the important problems in mathematical science and engineering is singular
value decomposition (SVD). It is often used in many applications such as real-time
signal processing, where the solution to these problems is needed in the shortest possible
time. SVD is one of the most important factorization of a real m-by-n (m≥n) matrix,
and is a very computationally intensive problem. Given the growing availability of
parallel computers and the need for faster solutions to the SVD problem, there has
been great interest in the development of parallel implementations of the singular value
decomposition.

A singular value decomposition of a real m-by-n (m≥n) matrix A is its factorization
of this matrix into the product of three matrices:

A=UDVT

where U is an m-by-n matrix with orthogonal columns, D is an n-by-n non-negative
diagonal matrix, and V is an n-by-n orthogonal matrix. For more details, please refer
to Golub and Reisch [1]. The most common method used for the solution of the SVD
problem is incorporated in the Golub–Kahan SVD algorithm [1,2], which requires
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O(mn2) time on a single processor computer. In order to reduce the computation time
of this sequential algorithm, there has been much interest recently in developing faster
parallel SVD [2–9]. On a linear processor array, the most efficient SVD algorithm is
the Jacobi-like algorithm given by Brent and Luk [3]. The algorithm, which is based
on a one-sided orthogonalization method due to Hestenes [10], takes O(mnS) time on
O(n) processors where S is the number of sweeps. However, Brent and Luk’s algorithm
is not optimal in terms of communication overhead. Unnecessary costs are incurred
by mapping the systolic array architecture onto a ring connected linear array due to
the double sends and receives required between pairs of neighboring processors.
Eberlein [11], Bischof [12] and others have proposed various modifications of this
algorithm for hypercube implementations, which require the embedding of rings via
binary reflected Gray Codes. Gao and Thomas [13] have investigated this problem using
a recursive divide-exchange communication pattern. These algorithms have the same
order of magnitude of time complexity as the one described by Brent and Luk,
but reduce the constant factor. SVD algorithms on hypercube and shuffle-exchange
computers have also been designed by Pan and Chuang [14]. Instead of mapping a
column of data onto a processor in a hypercube, as is done in Chuang and Chen [5]
and Gao and Thomas [13], they map a column pair of data onto a column of processors
in a hypercube or a shuffle-exchange computer. Using this method, the total time is
reduced to O(n log m) per sweep using (mn)/(2 log m) processors.

Most of the parallel algorithm of the SVD problem has been targeted to be executed
on point-to-point parallel architectures. The data transmission in these architectures is
quite different from that on arrays of processors with pipelined optical buses. One of
the unique features of a pipelined optical bus is its ability to allow the current
transmission of messages in a pipelined fashion while having a very short end-to-end
message delay. This makes it very efficient in the connection of parallel computers. For
this reason, arrays of processors with pipelined optical buses have attracted a lot of
attention from researchers recently. We will briefly introduce this novel architecture in
Section 3. Many important parallel algorithms have been implemented on such an
architecture, such as broadcasting [15], sorting [16], selection [17], numerical
problems [18], and Hough transform [19]. In this paper, we use this novel architecture
for the implementation of efficient parallel algorithms for the SVD problem.

This paper is organized as follows. Hestenes’ method for solving the SVD problem
is reviewed in the next section. In Section 3, a parallel SVD algorithm, which is based
on the Hestenes method, is implemented on a 1-D array of processors with a pipelined
optical bus. In Section 4, a variation of this parallel algorithm is implemented on a 2-
D array of processors with pipelined optical buses. In Section 5, oversized SVD problems
are discussed. Section 6 gives a summary and assessment of our results.

2. Singular value decomposition

There is a wealth of serial SVD algorithms available in the literature. Most of these
algorithms can be transformed into parallel algorithms to be run on parallel computers.
Each of these serial algorithms exhibits a certain degree of parallelism. Thus, in choosing
the serial algorithm to be transformed into a parallel algorithm, we have to take the
potential of inherent parallelism within the algorithm into account. For this reason,
we choose the Hestenes method of solving the SVD problem [10] to implement it on
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the array of processors with optical pipelined buses because of its high potential of
parallelism and its flexibility in being transformed efficiently into a parallel algorithm
suited for our architecture, even though its sequential version is less efficient than that
of the Golub–Kahan–Reinsch SVD method [1,2].

The basic idea of the decomposition is to generate an orthogonal matrix V such that
the transformed matrix AV=W has orthogonal columns. Normalizing the Euclidean
length of each non-null column to unity, we get the relation

W=U′D (1)

where U′ is a matrix whose non-null columns form an orthonormal set of vectors, and
D is a non-negative diagonal matrix. An SVD of A is then given using the following
relation:

A=WVT=U′DVT (2)

As a null column of U′ is always associated with a zero diagonal element of D, (1) and
(2) are essentially identical.

Hestenes [10] uses plane rotations to construct V. A sequence of matrices {Ak} is
generated by

Ak+1=AkRk (k=1, 2, 3, . . .)

where A1=A, and each Rk is a plane rotation. Let Ak=(ak
1, ak

2, . . . , ak
n), where ak

i is the
ith column of Ak. Suppose Rk=(rk

ij) is a rotation on the (p, q) plane which orthogonalizes
columns ak

p and ak
q of Ak with p<q. Rk is an orthogonal matrix with all of its elements

identical to those of the unit matrix except that

rk
pp=cos h rk

pq=sin h
(3)

rk
qp=−sin h rk

qq=cos h

We note that post-multiplication of Ak by Rk affects only columns ak
p and ak

q, and that

(ak+1
p , ak+1

q )=(ak
p, ak

q)C cos h
−sin h

sin h
cos hD (4)

The rotation angle h should be chosen so that the two new columns are orthogonal.
For this we can use the formulas given by Rutishauser [20]. Defining:

c=(ak
p)Tak

q, a=(ak
p)Tak

p, b=(ak
q)Tak

q (5)

We set h=0, if c=0. Otherwise, we compute

L=
b−a

2c
,t=

sign(L)
|L |+J1+L2

(6a)
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Figure 1. A 1-D array with an optical bus.

c=cos h=
1

J1+t2
, s=sin h=t cos h (6b)

The rotation angle h always satisfies |h |≤(p/4).
In this way, we orthogonalize the pth and the qth columns in the kth step. The

process in which all column pairs (i, j ) for i<j are orthogonalized exactly once is called
a sweep. We repeat the sweep until A converges to W, which has orthogonal columns.
In actual computation, we can select a small positive number e and stop the computation
when the inner product of every column pair is less than e. We can use e as a threshold,
and orthogonalize a column pair only when its inner product is larger than e. This
threshold approach accelerates the convergence.

For a matrix with n=2g columns, n(n−1)/2 column pairs have to be orthogonalized
in a sweep. More than one column pair can be orthogonalized simultaneously in a
parallel system. In the orthogonalization, the elements of the new columns can be
computed in parallel. The inner product operation to compute the rotation parameters
c, a, and b can also be carried out in parallel. The critical issue here is how to compute
the rotation parameters efficiently, perform orthogonalization of column pairs, and
move columns to create all column pairs, using the pipelined optical buses available in
the system.

3. SVD on 1-D arrays with a pipelined optical bus

Before we discuss the detailed implementation of the SVD algorithm on the 1-D array
of processors (PEs) with a pipelined optical bus, it is appropriate to give a brief
introduction to this novel architecture and discuss its functionality. Figure 1 shows a
linear array of processors connected with an optical pipelined bus. Each processor is
connected to the bus with two directional couplers (for the conversion of optical signals
to electronic signals and vice versa), one for transmitting messages on the lower bus
segment and the other for transmitting messages on the upper bus segment [15,17,
21–23]. Because of the properties of the optical bus (waveguides), messages propagate
unidirectionally from right to left on the lower bus segment and from left to right on
the upper bus segment. That is why two buses are needed for such a computer system,
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unlike traditional electronic buses where electronic signals can propagate in either
direction on the same bus. Each processor uses a set of control registers to store
information needed to control the transmission and reception of messages by that
processor which will be explained later. The above computer system can operate in
MIMD mode where each processor would have its own controller, or in SIMD mode
where a single controller is used for all the processors. In this paper, this parallel
computer system is assumed to be operating in SIMD mode, and thus our algorithms
are designed with this mode in mind.

For convenience, we let the optical path length between any two couplers on the bus
be d0 units. Denote the propagation time of a light signal between two couplers by tc;
that is, tc=d0/cg, where cg is the velocity of light on the bus. Let a bus cycle, Tc, be
Ntc. With a concurrent bus accessing method, often referred to as bus pipelinings [21,
22], processors can transmit their messages simultaneously at the beginning of each
bus cycle. As a result of a simultaneous transmission by all processors, a train of N
messages is formed on the lower segment of the bus and will propagate from left to
right on the upper segment. Processors that wish to receive any message from among
the train of messages transmitted must wait for the message to arrive at its receiver [23].
These properties are a result of the unique characteristics of optical buses (waveguides).
For more details, readers are referred to Melhem et al. [22].

Messages transmitted by different processors may overlap with each other even if they
propagate unidirectionally on the bus. We call these message overlappings transmission
conflicts. Assume each message has b binary bits, where each bit is represented by an
optical pulse, with the existence of a pulse for 1 and the absence of a pulse for 0. Let
w be the width (or duration) of each pulse in seconds. To ensure free of transmission
conflicts, the following condition has to be satisfied:

tc>bw (7)

We call tc a pipeline cycle; thus, the term pipelined bus is self-explanatory. The above
condition ensures that each message will be ‘fit’ into a pipeline cycle such that, in a
bus cycle, up to N messages can be transmitted by processors simultaneously without
collisions on the bus. This is the biggest difference between an optical bus and electronic
bus, where the former can handle up to N simultaneous messages when connected to
n processors while the latter can handle just one message regardless of the number of
processors. In a parallel array, messages normally have very short length (b is very
small). Thus, in the remaining discussions, we assume that the condition given by eqn
(7) above is always satisfied and no transmission conflicts are possible as long as all
processors are synchronized at the beginning of each bus cycle.

In SIMD environments, each processor knows the source (processor id) of the
message it is receiving and when it is sent relative to the beginning of a bus cycle.
Therefore, the time (relative to the beginning of a bus cycle) can be easily calculated
by the processor receiving the message. Let the processor that wishes to receive a
message be processor i. Assume that the message is sent by processor j at the beginning
of bus cycle C. We use a receiving function, rec(i, j, C), to determine the time that
processor i has to wait, relative to the beginning of bus cycle C, before receiving the
message from processor j. The value of the function, in the number of pipeline cycles,
is given in the following equation:
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rec(i, j, C)=i+j+1 (8)

By calculating the receiving function as given by eqn (8), each processor would be
able to selectively receive any message from a train of messages in each bus cycle.
These values of receiving functions can be precomputed and stored in a set of
receiving control registers for fast retrieval during the execution of the algorithm. The
precomputing of these values is done, obviously, according to the design of the given
algorithm. Readers may refer to Melhem et al. [22] for details.

Now, it is time to present the SVD algorithm on the 1-D array with an optical bus
of size n/2, in which every PE has a local memory large enough to store a pair of
columns of data elements. Suppose that the two columns are stored in arrays A(i )
and B(i ), 0≤i<n/2, respectively. Every PE continuously receives commands from the
controller to perform the orthogonalization of the column pair concurrently with other
PEs according to eqns (3–6). A procedure called 1-D-ORTH is used to orthogonalize
a column pair as follows. 1-D-ORTH consists of the following steps, i.e. to update a,
c, and b using (5), to calculate L, t, c, and s using (6), and to orthogonalize the column
pair based on (4). Since the length of a column is m, it takes O(m) to update (5). All
other steps in 1-D-ORTH can be done in constant time. Hence, the time to perform
1-D-ORTH is O(m).

After performing the orthogonalization of the column pair, each PE exchanges a
column of data with another PE. Clearly, any exchange of column data between two
PEs can be done in m bus cycles since each PE can put one message onto the bus and
receive one message from the bus in one bus cycle and a column contains m data
elements. Here, the exchange sequence described in Dekel et al. [24] is used to move
data column A(i ) in PE[i ], for all i, to all other PEs sequentially to produce all (A, B)
column pairs, i.e. the set {(Ap, Bq) |p=0, 1, 2, . . . , n/2−1, q=0, 1, 2, . . . , n/2−1}. In
order to obtain all possible column pairs, one still has to consider the pairing among
the A columns and among the B columns. This can be achieved by iteratively applying
the process of exchanging the A and the B columns between neighboring nodes to
create subarrays and then moving the A columns within the subarrays. The entire
algorithm is given in procedure 1-D-SVD.

procedure 1-D-SVD
1 While not (all |c |<e) do
2 1-D-ORTH;
3 for k :=0 step 1 until g−1 do
4 for p :=1 step 1 until 2g−k−1 do
5 h :=f (g−k, p);
6 Rrc(i )←1+i+i (h);
7 for j :=1 step 1 until m do
8 Bus←A[ j ](i );
9 A[ j ](i )←Bus;
10 end for j ;
11 1-D-ORTH;
12 end for p;
13 if rk=0 then
14 Rrc(i )←1+i+i (h);
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15 for j :=1 step 1 until m do
16 Bus←B[ j ](i );
17 A[ j ](i )←Bus;
18 end for j ;
19 else
20 Rrc(i )←1+i+i(h);
21 for j :=step 1 until m do
22 Bus←A[ j ](i );
23 B[ j ](i )←Bus;
24 end for j ;
25 1-D-ORTH;
26 end for k;
27 end while;

In the above algorithm, f (g−k, p) is the pth number in the exchange sequence [24]
of length 2g−k−1. i (h) is the number whose binary representation is iq, . . . , ih, . . . , i0.
Rrc(i ) is the receiving control register used to store the receiving function value in
processor i. Thus, when Rrc(i ) is assigned the value of 1+i+i (h), processor i receives a
message automatically from processor i (h). A[ j ](i ) is the j th element of the data column
stored in processor i. Column pairs are generated within a subarray by loop p using
the exchange sequence [25]. Lines 13 to 24 iteratively exchange the A and B columns
between neighboring nodes. Obviously, lines 8, 9, and 11 dominate the time complexity
of the algorithm since they are statements within the double loop. The time spent in
procedure 1-D-ORTH on line 11 is O(m) since each PE needs to process a column pair
whose length is m. The number of times line 11 is executed is given by:

]
g−1

k=0
A ]

2g−k−1

p=1

1B=An2−1B+An4−1B
+An8−1B · · ·+1≤n.

(9)

Hence, the time spent in line 11 is O(mn). Similarly, it can be shown that the number
of times lines 8 and 9 are executed is

]
g−1

k=0

m(2g−k−1)

=mGAn2−1B+An4−1B+An8−1B · · ·+1H (10)

≤mn

Thus, the time spent in lines 8 and 9 is O(mn). Therefore, the total time of algorithm
1-D-SVD is O(mn), which is on the same order of magnitude as that on a hypercube
of the same size [5]. While a PE in a linear array of size n with a pipelined optical bus
has only two communication ports, a PE in a hypercube of size n has log n ports.
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Figure 2. A 2-D array with row and column optical buses.

4. SVD on 2-D arrays with pipelined optical buses

The 1-D array with a single pipelined optical bus has certain limitations [23]. First, the
system size cannot be very large since it is limited by the minimum power that can be
detected by the PE at the very end of the bus (similar to electronic buses). Second,
when the number of PEs, N, is very large, the end-to-end transmission delay increases
since the condition given by eqn (3) has to be held and the number of pipeline cycles
is proportional to N. Moreover, many problems, such as SVD, are 2-D in nature and
are more efficient when implemented on a 2-D array of processors. To overcome the
shortcomings of the linear array of processors, we consider a 2-D array of processors
where each row of processors and each column of processors are connected by a
pipelined optical bus. Thus, a PE in a 2-D array is coupled to four waveguides: two
for transmitting messages and two for receiving messages (see Fig. 2). Communication
between PEs in the same row or in the same column in a 2-D array can be carried the
same way as in the linear case. If two PEs in different rows or different columns need
to communicate, then two bus cycles are needed. That is, at the end of the first bus
cycle a message has to be buffered at a node which is in the same row (or column) as
the destination [15,21–23]. It is expected that parallel algorithms can be run more
efficiently on a 2-D array than on a 1-D array as can be deduced from our SVD
algorithms implemented on a 1-D array and a 2-D array. Nevertheless, a 1-D array
with a pipelined optical bus is a legitimate architecture with its own merits [22].

Now we consider the implementation of the SVD problem on the 2-D array of
processors with pipelined optical buses of size m×(n/2), where n=2g+1. Each PE in a
row has an index which is between [0, m−1] and each PE in a column has an index
which is between [0, n/2−1]. Hence, each PE can be uniquely identified by its row index
and column index. Each PE(i, j ) has several registers; registers A(i, j ) and B(i, j ) are
used to store matrix elements. The given matrix A is initially stored as follows:

A(i, j )=aij, B(i, j )=ai,(n/2)+j , for 0≤i<m, 0≤j<n/2 (11)
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where aij is the (i, j ) element of matrix A. Thus, the n columns of the matrix are
partitioned into n/2 pairs and each column pair is stored in a column of m processors.

A column of m processors orthogonalizes the column pair stored in it by using the
procedure 2-D-ORTH explained below. The procedure 2-D-ORTH is similar to 1-D-
ORTH except that a column pair of data is stored in a column of processors instead
of one processor. 2-D-ORTH is divided into several distinct phases and each phase
corresponds to its counterpart in 1-D-ORTH. In the first phase, the local products

c(i, j )=A(i, j )∗B(i, j ) 0≤i<m

a(i, j )=A(i, j )∗A(i, j ) 0≤i<m (12)

b(i, j )=B(i, j )∗B(i, j ) 0≤i<m

are calculated in the m processors concurrently. In the second phase, the sums

]
m−1

i=0

c(i, j ), ]
m−1

i=0

a(i, j ), and ]
m−1

i=0

b(i, j ) (13)

are computed by combining the partial sums using the reporting operation described
in Hamdi and Pan [18], and the results are stored in PE(0, j ). In the third phase, the
values L( j ), t( j ), c( j ), and s( j ) are computed locally in P(0, j ). In the fourth phase,
the rotation parameters c(0, j )=c( j ) and s(0, j )=s( j ) are broadcast over the column
buses to all processors in the same columns. The broadcast operation described in
Hamdi and Pan [18] can be used here. In the fifth phase, elements of the two new
matrix columns are computed locally using the rotation parameters received. The time
complexity of the 2-D-ORTH can be derived as follows. The first phase takes a constant
time since all operations are local. The second phase needs O(log m) time since these
are reporting operations over columns of m PEs [18]. The third phase uses a constant
time. In the fourth phase, one bus cycle is needed since it is a broadcasting operation
over columns [18]. The fifth phase requires a constant time again. Hence, the time taken
in 2-D-ORTH is O(log m).

After the procedure 2-D-ORTH is performed in parallel on all n/2 columns of
processors, half of the newly computed matrix columns are exchanged in parallel
between neighboring columns of processors. The procedure 2-D-ORTH is then carried
out on all columns of processors in parallel again. Clearly, any column exchange
between two PEs can be done in one bus cycle since this is a one-to-one operation.
Here again the exchange sequence described in Dekel et al. [24] is used to move column
A[i, j ] in PE[i, j ], for all i and j, to all other PEs sequentially to produce all (A, B)
column pairs in a column of PEs, i.e. the set {(Ap, Bq) |p=0, 1, 2, . . . , n/2−1, q=0, 1,
2, . . . , n/2−1}. In order to obtain all possible column pairs, one still has to consider
the pairing among the A columns and among the B columns. This can be achieved by
iteratively applying the process of exchanging the A and the B columns between
neighboring columns of PEs to create subsystems and then moving the A columns
within the subsystems. The entire algorithm is very similar to its 1-D counterpart and
is specified in 2-D-SVD:
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procedure 2-D-SVD
1 While not (all |c |<e) do
2 2-D-ORTH;
3 for k :=0 step 1 until g−1 do
4 for p :=1 step 1 until 2g−k−1 do
5 h :=f (g−k, p);
6 Rrc(i, j )←1+i+i(h);
7 RowBust(i )←A(i, j );
8 A(i, j )←RowBus(i );
9 2-D-ORTH;
10 end for p;
11 if rk=0 then
12 Rrc(i,j )<−1+i+i(h);
13 RowBus(i )←B(i, j );
14 A(i, j )←RowBus(i );
15 else
16 Rrc(i,j )←1+i+i(h);
17 RowBus(i )←A(i, j );
18 B(i, j )←RowBus(i );
19 2-D-ORTH;
20 end for k;
21 end while;

In the 2-D-SVD algorithm, A(i, j ) and B(i, j ) denote memory locations within
processor (i, j ). RowBus(i ) is the optical bus at row i in the array. All the other symbols
have the same meaning as described in the 1-D-SVD algorithm. The algorithm is similar
to the 1-D-SVD except that a column pair is mapped onto a column of processors in
the 2-D-SVD instead of onto a single processor. The time spent in procedure 2-D-
ORTH is O(log m) as analysed before. Most time of the algorithm is spent within the
double loop (lines 5 to 9). Since lines 5 and 6 require a constant time and each data
transfer in lines 7 and 8 takes one bus cycle, the time is dominated by line 9. Similar
to the analysis of the 1-D-SVD algorithm, the number of times line 9 is executed is at
most n. Therefore the total time of 2-D-SVD is O(n log m), which is on the same order
of magnitude as that on a hypercube of the same size [14]. While a PE in a 2-D array
with a pipelined optical bus has only four communication ports, a PE in a hypercube
of size mn/2 has log(mn/2) ports.

5. Large SVD problems

Finally, let us discuss the time complexity of the parallel SVD algorithm on an array
where the number of processors is much smaller than the size of the problem. Suppose
we have a 2-D v×w array with optical pipelined buses. Without loss of generality,
suppose v≤m and w≤n. Also assume that m and n are multiples of v and w, respectively.
We partition the m-by-n matrix A into h groups of w columns each: C1, C2, . . . , Ch, as
shown in Fig. 3 for h=3. In this example, all column pairs which are orthogonalized
in a sweep can be obtained by pairing the columns in the following way: (C1, C1), (C1,
C2), (C1, C3), (C2, C2), (C2, C3). Therefore, the whole computation consists of processing
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m C1 C2 C3

w w ww

n

Figure 3. Column groups in a large matrix.

all pairs of column groups by algorithm 2-D-SVD. To process a pair of column groups,
m/v matrix columns are stored in each column of processors with m/v pairs of matrix
elements stored in the local memory of each processor. O(w(log v+m/v) ) time is required
to process a pair of column groups because each processor has to perform m/v
multiplications and additions locally, and the summation of partial sums and the
broadcast of parameters within a column of processors each requires O(log v) time.
The number of pairs of column groups is

h+(h−1)+(h−2)+· · ·+2+1=h(h+1)/2 (14)

where h=n/w. Thus, the total time required to compute a sweep of SVD for an m×n
matrix is O( (h(h+1)/2)w(log v+m/v) )=O(nh(log v+m/v) ) on a 2-D v×w array with
optical pipelined buses. For large SVD problems on a 1-D array with optical pipelined
buses, similar analysis can be applied. Assume that a 1-D array with optical pipelined
buses has w processors, h(h+1)/2 pairs of column groups need to be processed, where
h=n/w. To process a pair of column groups, each processor has to process w column
pairs. The time to process each column pair is O(m). Hence, the time required to
process a sweep of SVD for an m×n matrix is O( (h(h+1)/2)mw) which is (hmn).
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6. Conclusions

Parallel computers using static networks such as the mesh and hypercube have the
problem of large diameters due to their limited connectivities. The time complexities
of parallel algorithms on these networks are lower bounded by their diameters. Adding
buses to these networks is one way to solve the problem. However, messages cannot
be transmitted concurrently on an electronic bus. A pipelined optical bus, on the other
hand, not only has a shorter end-to-end propagation delay, but also can be accessed
concurrently by messages. It has been established that much higher bandwidth can be
achieved with pipelined optical bus communication than with exclusive electronic bus
access communication [21]. Thus, many parallel algorithms can be implemented on an
array with a pipelined optical bus efficiently. In this paper, we have shown that the
time complexities used in the algorithms on arrays with optical interconnects are
asymptotically equivalent to those implemented on the hypercube while they use
substantially less hardware.

In this paper, we have concentrated on algorithm design on the optical bus system.
During the description of the singular value decomposition algorithms and the optical
bus system, many assumptions from Qiao and Melhem [23] are used. Many technical
details such as clock distribution, frame synchronization, electronically controlled
optical switching, conversion between optical and electronic signals, and packet size
limitation are either discussed briefly or completely omitted. Interested readers may
refer to references [15,17,21,23,25] for details.

Recently, the authors have proposed another new computational model called
Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) based on optical
waveguides [26]. In this model, messages can be transmitted in a pipelined fashion on
an optical bus system and the bus can be dynamically reconfigured into independent
segments to satisfy different communication requirements during a computation. Using
conditional optical delays, many basic operations such as binary prefix summation,
split, compression, and multiple broadcasting can be done in one bus cycle [26]. It is
clear that LARPBS is much more powerful than the model used in this paper although
only several switches are added to a pipelined optical bus system. We believe that the
SVD problem can be solved more efficiently on the LARPBS and we are doing research
in this direction.
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